首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3304篇
  免费   253篇
  国内免费   696篇
化学   3536篇
晶体学   30篇
力学   70篇
综合类   48篇
数学   104篇
物理学   465篇
  2024年   1篇
  2023年   27篇
  2022年   55篇
  2021年   85篇
  2020年   111篇
  2019年   91篇
  2018年   97篇
  2017年   158篇
  2016年   165篇
  2015年   118篇
  2014年   159篇
  2013年   368篇
  2012年   194篇
  2011年   192篇
  2010年   155篇
  2009年   193篇
  2008年   216篇
  2007年   221篇
  2006年   193篇
  2005年   203篇
  2004年   170篇
  2003年   145篇
  2002年   135篇
  2001年   106篇
  2000年   66篇
  1999年   78篇
  1998年   66篇
  1997年   74篇
  1996年   72篇
  1995年   60篇
  1994年   70篇
  1993年   38篇
  1992年   53篇
  1991年   29篇
  1990年   23篇
  1989年   17篇
  1988年   23篇
  1987年   10篇
  1986年   5篇
  1985年   2篇
  1984年   2篇
  1982年   6篇
  1980年   1篇
排序方式: 共有4253条查询结果,搜索用时 140 毫秒
1.
A simple method for nanocrystalline cellulose (NCC)/fluorinated polyacrylate was developed by RAFT‐mediated surfactant‐free emulsion polymerization, in which the nanocomposites formed a core‐shell spherical morphology. The influence of the content of NCC‐g‐(PAA‐b‐PHFBA) (AA was acrylic acid, HFBA was hexafluorobutyl acrylate) on the properties of latex and film were systematically studied. The monomer conversion, the tensile strength, and water–oil repellency of film increased first and then decreased, the latex particle size decreased first and then decreased, when the content of NCC‐g‐(PAA‐b‐PHFBA) increased from 1 to 6 wt %. Elongation at break and thermal stability distinctly decreased when the content of NCC‐g‐(PAA‐b‐PHFBA) gradually increased. XPS showed that the fluorine‐containing groups well concentrated at the film–air interfaces during the annealing process. SEM analysis revealed that the treated fiber had a rugged surface, and the treated fabric had an excellent water repellency. In addition, this green grafting method in water offered a new perspective for the fabrication of exceptional NCC‐based nanocomposites with NCC as the core and also helped to promote the potential applicability of NCC in a range of multipurpose applications. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1305–1314  相似文献   
2.
Self‐emulsion polymerization (SEP), a green route developed by us for the polymerization of amphiphilic monomers, does not require any emulsifier or an organic solvent except that the water‐soluble initiators such as 2,2′‐azobis[2‐(2‐imidazolin‐2‐yl)propane]dihydrochloride (VA‐044) and potassium persulfate (KPS) are only used. We report here the polymer nanoscaffolds from a number of amphiphilic monomers, which can be used for in situ encapsulation of a variety of nanoparticles. As a demonstration of the efficacy of these nanoscaffolds, the synthesis of a biocompatible hybrid nanoparticle (nanohybrid), prepared by encapsulating Fe3O4 magnetic nanoparticle (Fe3O4 MNPs) in poly(2‐hydroxyethyl methacrylate) in water, for MRI application is presented. The nanohybrid prepared following the SEP in the form of an emulsion does not involve the use of any stabilizing agent, crosslinker, polymeric emulsifier, or surfactant. This water‐soluble, spherical, and stable nanohybrid containing Fe3O4 MNPs of average size 10 ± 2 nm has a zeta potential value of ?41.89 mV under physiological conditions. Magnetic measurement confirmed that the nanohybrid shows typical magnetic behavior having a saturation magnetization (Ms) value of 32.3 emu/g and a transverse relaxivity (r2) value of 29.97 mM?1 s?1, which signifies that it can be used as a T2 contrast agent in MRI. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019  相似文献   
3.
钱冬杰 《中国物理 B》2022,31(1):10503-010503
Synchronization is a process that describes the coherent dynamics of a large ensemble of interacting units.The study of explosive synchronization transition attracts considerable attention.Here,I report the explosive transition within the framework of a mobile network,while each oscillator is controlled by global-order parameters of the system.Using numerical simulation,I find that the explosive synchronization(ES)transition behavior can be controlled by simply adjusting the fraction of controlled oscillators.The influences of some parameters on explosive synchronization are studied.Moreover,due to the presence of the positive feedback mechanism,I prevent the occurrence of the synchronization of continuous-phase transition and make phase transition of the system a first-order phase transition accompanied by a hysteresis loop.  相似文献   
4.
A new germanosilicate zeolite named SCM-15 (Sinopec Composite Material No. 15), the first zeolite containing a 3-dimensional (3D) channel system with interconnected 12-, 12-, and 10-ring channels (pore sizes: 6.1×7.2, 6.1×7.4, and 5.2×5.9 Å), has been synthesized using neutral 4-pyrrolidinopyridine as organic structure-directing agents (OSDAs). Its structure has been determined by combining single-crystal electron diffraction (SCED) and synchrotron powder X-ray diffraction (SPXD) data. The unique open framework structure of SCM-15 is related to that of FOS-5 ( BEC ), ITQ-7 ( ISV ), PKU-16 ( POS ), ITQ-26 ( IWS ), ITQ-21, Beta polymorph B, and SU-78B, since all these framework structures can be constructed from similar chains which are connected through shared 4-ring or double 4-ring (d4r) units. Based on this relation, six topologically reasonable 3D large or extra-large pore hypothetical zeolites are predicted.  相似文献   
5.
Cationic emulsions of triblock copolymer particles comprising a poly(n‐butyl acrylate) (PnBA) central block and polystyrene (PS) outer blocks were synthesized by activator generated by electron transfer (AGET) atom transfer radical polymerization (ATRP). Difunctional ATRP initiator, ethylene bis(2‐bromoisobutyrate) (EBBiB), was used as initiator to synthesize the ABA type poly(styrene‐bn‐butyl acrylate‐b‐styrene) (PS‐PnBA‐PS) triblock copolymer. The effects of ligand and cationic surfactant on polymerizations were also discussed. Gel permeation chromatography (GPC) was used to characterize the molecular weight (Mn) and molecular weight distribution (MWD) of the resultant triblock copolymers. Particle size and particle size distribution of resulted latexes were characterized by dynamic light scattering (DLS). The resultant latexes showed good colloidal stability with average particle size around 100–300 nm in diameter. Glass transition temperature (Tg) of copolymers was studied by differential scanning calorimetry (DSC). © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 611–620  相似文献   
6.
This study investigated vitamin K1 (VK1) distribution following intravenous vitamin K1–fat emulsion (VK1–FE) administration and compared it with that after VK1 injection. Rats were intravenously injected with VK1–FE or VK1. The organ and tissue VK1 concentrations were determined using high‐performance liquid chromatography method at 0.5, 2 and 4 h to determine distribution, equilibrium and elimination phases, respectively. In the VK1–FE group, the plasma, heart and spleen VK1 concentrations decreased over time. However, other organs like liver, lung, kidney, muscle and testis, reached peak VK1 concentrations at 2 h. In the VK1 injection group, the liver VK1 concentrations were significantly higher than those in other organs at the three time points. However, VK1 concentrations in the other organs peaked at 2 h. In addition, in VK1–FE group, the heart, spleen and lung VK1 concentrations were significantly higher than those in the VK1 injection group at the three time points, and the liver VK1 concentration was significantly higher than that in the VK1 injection group at 4 h. The VK1 amount was greatest in the liver compared with the other organs. Thus, the liver is the primary organ for VK1 distribution. The distribution of VK1 is more rapid when injected as VK1–FE than as VK1. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
7.
8.
A series of Mn(II) aminophosphonate complexes were successfully synthesized and intercalated into the hydroxy double salt [Zn5(OH)8]Cl2·yH2O. Complex incorporation led to an increase in the interlayer spacing from 7.8 to 10–12 Å. Infrared spectroscopy showed the presence of the characteristic vibration peaks of the Mn(II) complexes in the intercalates' spectra, indicating successful incorporation. The complex-loaded composites had somewhat lower proton relaxivities than the pure complexes. Nevertheless, these intercalates may have use as MRI contrast agents for patients with poor kidney function, where traditional Gd(III)-based contrast agents cause severe renal failure.  相似文献   
9.
The batch emulsion copolymerization of vinyl acetate with different vinyl silane functional monomers (vinyl trimethoxysilane [VTMS], vinyl triethoxysilane [VTES], and vinyl silanetriol [VSTO]) is studied. The nature of the silane strongly affects the development of the microstructure and crosslinking ability of the latexes. A combination of techniques (Soxhlet extraction, centrifugation, assymetric‐flow field flow fractionation AF4/MALS/RI) shows that the factor controlling the molar mass and crosslinking density is the degree of hydrolysis of the alkoxysilane, producing higher molar masses and degrees of crosslinking when the degree of hydrolysis is high. Thus, the copolymer containing VSTO produced a very crosslinked latex, the one with VTMS produced a latex with a low degree of crosslinking in the wet state that can yield high degrees of crosslinking upon drying, and the latex with VTES do not produce significant amounts of crosslinking neither before nor after drying.  相似文献   
10.
《Arabian Journal of Chemistry》2020,13(12):9118-9129
Malic acid, a carboxylic acid most found in fruits, is a smooth taste substance used as flavoring and preservative agent in foods, although not as used as citric acid. There are no studies focusing in quantitative results or investigations on its physicochemical properties, useful to the food industry, or even the confirmation of its calcium chelating, buffer texturizer and antioxidant alleged properties. Thus, the aim of this work was the assessment of most physicochemical properties of malic acid, solid and in solution, that could be useful to the food industry understand its real potential. The following analyses were carried out: melting point; structure (NMR, XRD, FTIR and SEM/EDS); TGA/DTG; solubility, hygroscopicity; antioxidant activity, iron chelating and antibacterial activities and stability of pectin gels. The melting temperature found was 129.71 °C. TGA/DTG exhibited first loss of mass around 140 °C. In the temperature range of 10 to 55 °C, it exhibited a high solubility in water, from 48.12 to 61.49 (100w), respectively. The tested bacteria, related to food spoilage, were inhibited by DL-malic acid 10% or higher. Chelating and antioxidant activities showed expressive results even in 1% solution. Pectin gels with malic acid had stronger structure and less syneresis than citric acid gels. In addition, calcium chelating, buffer texturizer and antioxidant properties were confirmed. Thus, malic acid has potential to be applied in a wide variety of food products as fortified beverages, frozen and refrigerated items, oils, pectin gels, hard and soft candies, and biofilms, due to all the characteristics quantified.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号